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FORCE-TEST INVESTIGATION OF A 1/L4-SCALE MODEL
OF THE MODIFIED VZ-2 ATRCRAFT

By Robert H. Kirby, Robert O. Schade,
and Louis P. Tosti
lLangley Research Center

SUMMARY

A force-~test investigation has been conducted to determine the longitu-
dinal aerodynamic characteristics and the aileron control effectiveness of a
l/h-scale model of the modified VZ-2 tilt-wing vertical-take-off-and-landing
aircraft equipped with a full-span slotted flap. The model was also tested
over the transition range with a leading-edge droop modification.

The results of the force tests indicated that the use of full-span slotted
flaps produced sizable increases in 1lift which resulted in considerable reduc-
tions in the wing incidence angles required throughout the transition range; and
these reductions in wing incidence were very beneficial in reducing wing stal-
ling in the transition range. The use of leading-edge droop had no appreciable
effect on the static longitudinal characteristics. The use of full-span aile-
rons as a yaw control for hovering and low-speed transition flight appears to
offer considerable promise; however, the phasing in of some roll producing con-
trol is necessary fairly early in the transition to eliminate the adverse roll
that is encountered.

INTRODUCTION

Flight tests of the original VZ-2 tilt-wing vertical-take-off-and-landing
(VIOL) aircraft, described in reference 1, showed that the aircraft had unaccept-
able lateral stability and control characteristics in the transition flight
conditions in a speed range of approximately 4O to 70 knots which corresponded
to a range of wing incidence from approximately 459 o 25°. The difficulties
resulted from wing stalling and were more severe for descent conditions than
for level~flight or climb conditions. The use of a wing-section modification
consisting of a modest amount of leading-edge droop and an increase in nose
radius was found to relieve the lateral stability and control troubles to a
considerable extent.

The tendency toward wing stall in the transition range had been recognized
from wind-tunnel tests as pointed out in references 2 to 4. The effect of this
stalling on the 1lift, drag, and power required, and, consequently, on short-
take-off-and-landing (STOL) and engine-out performance had been appreciated for



some time. The use of high-1ift devices, both trailing-edge flaps and leading-
edge devices, had been recommended to relieve the wing stalling by increasing
the 1ift capability of the wing. With the use of these high 1ift devices the
wing can produce more of the 1lift required of the wing-propeller system and
thereby reduce the angle of attack of the wing-propeller combination as
explained in detail in reference 4. As a result of this wind-tunnel work, the
aircraft was modified by the addition of a large flap to determine the effect
of such a flap on the lateral handling qualities in the transition range.

As a result of the foregoing experience, an investigation has been made
with the 1/L-scale free-flight model of the VZ-2 used in the previous investi-
gations of references 5 to 10 to determine: first, if upon close examination
of the range of flight conditions in which the lateral stability and control
difficulties assoclated with stalling had been observed in flight, the same
objectionable characteristics could be observed with a free-flight model; and,
second, if the difficulties could be recognized, whether the characteristics
would be improved by the use of the wing flaps that were to be installed on the
full-scale aircraft as a modification.

One phase of this investigation, reported in reference 11, dealt with
results of flight tests of the model with a full-span slotted flap and with and
without a full-span Krueger type nose flap. These flight tests included both
level and simulated descent flights over a range of airspeeds where wing stal-
ling might be expected to occur. The other phase of this investigation, which
is discussed in the present paper, consisted of force tests to determine the
aerodynamic characteristics of the model with a full-span slotted flap and
leading-edge droop. Tests were also made to determine the effectiveness of
full-span ailerons when used as yaw control for hover and low-speed flight.

Most of the tests were made in the wing incidence range between 20° and k40
where wing stalling was expected to be most objectionable, but a few addltlonal
tests were made to cover the complete range of wing incidence angle from 9 to

870,
SYMBOLS

The forces and moments are based on the stability-axis system, which is
an orthogonal system with the origin at the aircraft center of gravity. The
Z~2xis is in the plane of symmetry and perdendicular to the relative wind, the
X-axis is in the plane of symmetry and perpendicular to the Z-axis, and the
Y-axis is perpendicular to the plane of symmetry.

b wing span, ft
Cp drag coefficient, Fﬁ/qs
C,  1lift coefficient, Fr/aS

Cy side-force coefficient, FY/qS



Chn pitching-moment coefficient, MY/ch
C yawing-moment coefficient, MZ/qu
Cy rolling-moment coefficient, MX/qu
c wing chord, ft

drag, 1b

Fr, 1ift, 1b

FY side force, 1b

W wing incidence, deg

My rolling moment, ft-1b

My pitching moment, ft-1b

My, yawing moment, ft-1b

q free-stream dynamic pressure, lb/sq ft
S wing area, sq ft

v scaled-up aircraft velocity, knots

o4 angle of attack of fuselage, deg

B angle of sideslip, deg

By deflection of ailleron, deg

6a,R deflection of right aileron, positive trailing edge down, deg

Br flap deflection, deg
APPARATUS AND MODETL

A photograph of the l/h-scale model of the VZ~2 tilt-wing VTOL aircraft
with full-span flap is shown as figure 1, a three-view drawing of the model is
presented as figure 2, and pertinent geometric characteristics are given in
table I. The model had two 3=-blade propellers with flapping hinges and was
powered by a pneumatic motor which drove the propellers through interconnecting
shafting and right-angle gear boxes. The speed of the motor was changed to
vary the thrust of the propellers and the propeller blade angle was set at 120
at the 75-percent-radius station. Blade-form curves of the propellers are
presented in reference 8.



Details of the wing, full-span aileron, and sliding flap are shown in
figure 5. The geometric changes which have been made to the model to simulate
the full-scale aircraft in its modified configuration can be readily seen by
comparing figure 2 and table I of the present paper with figure 1 and table I
of reference 10. For the purpose of this paper, the main change was the instal-
lation of the full-span slotted flap which resulted in a 1l0-percent increase in
the wing chord when the flap was in the retracted position. The wing was piv-
oted at the 33.7-percent mean-aerodynamic-chord station and was tilted to pro-
vide incidences from 9° to 87°.

TESTS

The tests were made in the Langley full-scale tunnel with the model sup-
port strut mounted near the lower edge of the entrance cone and about 5 feet
above a ground board. Electric strain-gage balances were used to measure the
forces and moments on the model, and an electric tachometer was used to deter-
mine the model propeller speeds. Blockage and interference effects in the
tunnel were believed to be very small and, therefore, no wind-tunnel corrections
were applied to the data.

Force tests were made to determine the longitudinal characteristics of
the model for the flap-retracted condition and for flap deflections from 0° to
LO° at angles of wing incidence from 9° to 87° through an angle-of-attack range
from -10° to 20°. The flap conditions from 0° to LO° are with the flap fully
extended and pivoted at the leading edge of the flap which, when extended, is
located at station 12.80 as shown in figure 3. TForce tests to determine the
lateral stability characteristics of the flap-retracted configuration were made
at wing incidences of 90 and 40°. A few longitudinal tests were also made in
the flgp-retracted configuration with a leading-edge-droap fairing added to the
wing for wing incidences of 200, 30°, and 40°. A section showing the shape of
the leading-edge droop is shown in figure 3. The spanwise extent of the droop
was between the nacelles for one group of tests and full span for another group

of tests.

Full~span aileron-control-effectiveness tests were made at angles of wing
incidence from 9O to 87° for the flap-retracted condition and for the extended-
flap condition with flap deflections from 0° to 40°.

Tuft tests were made on the model in the flap-retracted and in the flap-
deflected 40° conditions. These tests were made through an angle-of-attack
range from -LO to 16° at wing incidences from 25° to 45° for the flap-retracted
condition and at wing incidences from 50 to 25° for the flap-deflected condi-
tion. These wing incidences represented a velocity range from approximately
61 knots to 39 knots for both the flaps-retracted and flaps-deflected
conditions.

A11 the force tests were made with power settings which, with the fuse-
lage at zero angle of attack and the controls neutral, gave zero forward accel-
eration. In each test the angle of attack, angle of sideslip, or right aileron
deflection was changed while the model propeller speed was held constant.
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The majority of the tests at angles of wing incidence below L40° were made
at an airspeed of 22.2 knots which gave an effective Reynolds number based on
the wing chord and free-stream velocity of about 310,000. TFor the tests at
higher angles of wing incidence it was necessary to reduce the tunnel airspeed
below 22.2 knots to avoid excessive propeller speeds in order to achieve the
zero~forward-acceleration condition.

RESULTS AND DISCUSSION

The results of a force-test investigation to determine the aerodynamic
characteristics of the VZ-2 tilt-wing VIOL aircraft with a full-span slotted
flap, leading-edge droop, and ailerons are presented in scaled-up dimensional
form for the convenience of the user in applying directly to the VX-2 aircraft
and in nondimensional form for ease in applying to other configurations without
rescaling these data. The dimensional forces and moments are scaled up to the
full-scale aircraft weight of 3450 pounds for steady level-flight conditions at
a fuselage angle of attack of 0°. The moments are based on the center-of-
gravity positions shown in table IT. The dimensional data may be rescaled if
desired to other sizes and weights by use of the simple formulas for scaling
data shown in the appendix of reference 12.

Tongitudinal
Effect of flaps.- Figures L4 and 5 present the basic longitudinal data in

scaled-up dimensional form, and figures 6 and 7 present the same data in terms
of conventional nondimensional coefficients based on free-stream velocity.

Summary figures for the longitudinal data are presented in figures 8 to
10 for the condition of zero angle of attack, which is the angle of attack at
which the drag was set equal to zero in the tests. The data of figure 8 show
that the use of a full-span slotted flap produced sizable increases in 1lift
coefficient for all wing incidences tested. This increased 1ift results in
considerable reductions in the angle of wing incidence required for any given
1ift throughout the transition range. For example, the use of a flap deflection
of 40P results in a reduction in wing incidence of 15° to 20° throughout the
transition speed range. Another effect of the flap, as shown by the summary
plot of pitching-moment data in figure 10, is to reduce the large nose-up pitch-
ing moment in the transition range which was characteristic of the original
VZ-2 configuration. It would be expected, however, that the main purpose of
the flap would be to relieve wing stalling in order to improve the flying qual-
ities and reduce the power required in the transition range.

An indication of the effectiveness of the flap in reducing wing stalling
is shown by the tuft-test results of figure 11. This figure shows the stall
patterns for the flap-retracted and 40° flap conditions with the data presented
side by side for angles of wing incidence that would give approximately the
same airspeed. These data show that the flap had a very marked effect in
relieving the wing stall but that this effect became less and less as the



airspeed was reduced. There is always some question as to the gpplicability

of small-scale tuft-test data; therefore, a comparison of the results of tuft
tests of the full-scale aircraft and the l/h-scale model for the original unmod-
ified configuration is presented in figure 12. These data show that the stall
patterns of the model were quite similar to those of the full-scale aircraft
and, therefore, infer that the effect of the flap on the stall shown in fig-

ure 11 is reasonably accurate.

Leading-edge droop modification.- The effect of leading-edge droop on the
longitudinal stability characteristics of the model w1th flap retracted are
presented in figures 13 to 16 for wing incidences of 20°, 30°, and 40°. These
data indicate that there was no appreciable effect of this small change on the
longitudinal characteristics - the result that would be expected on the basis
of conventional aerodynamics. The force tests of the full-scale aircraft
reported in reference 13, also indicated that the drooped-leading-edge modifi-
cation had very little effect on the level-flight longitudinal characteristics
in this same wing incidence range. However, flight tests of the full-scale
aircraft in level flight indicated that the installation of the drooped leading
edge on the full-scale aircraft alleviated the wing dropping, buffeting, and
yaw disturbances. The model was not flight tested with the leading-edge droop,
but the free~flight tests with a different leading-edge droop configuration
(a Krueger flap) reported in reference 12 indicated some improvement in flight
characteristics. Evidently, on this aircraft the use of leading-edge droop
improves the stalling characteristics of the wing in such a way as to be effec-
tive in improving the flying qualities without causing a sufficiently major
change to show up in the gross 1ift of the aircraft. This characteristic is
discussed in considerable detail in reference 13.

Lateral

Tateral stability.- Lateral stability data are presented 1n figures 17
and 18 for the flap-retracted condition at wing incidences of 9° and 40°. At
both angles of incidence the model was directionally stable at the larger
angles of sideslip, but at small angles of sideslip i1t was about neutrally
stable at a wing incidence of 9° and unstable at a wing incidence of 40°. In
the flight tests of the configuration without flaps reported in reference 1k,
the aircraft also experienced directional instability in the low sideslip-angle

range.

Aileron control effectiveness.-~ The results of tests made to determine
the effectiveness of full-span ailerons throughout the wing incidence range are
presented in figures 19 and 20 for the flaps-retracted condition. Figure 21
presents the basic data for various wing incidences through the transition
range with three flap deflections at each wing incidence chosen to roughly
bracket a zero-pitching-moment condition with the controls neutral. The data
from figures 19 and 21 are summarized in the form of the variation of yaw and
roll control effectiveness derivatives MZ/SaR and ‘MX/aaR’ respectively,
with forward speed and are presented in figure 22. The values of the deriva-

tives were obtained by taking the slopes between test points for right aileron
control deflections of 10° and -10°. The data show that the yawing moment
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produced by the ailerons drops off somewhat between hovering flight and a speed
of about 20 knots and then remains fairly constant through the remainder of the
transition. The data alsoc show that the various flap deflections used in the
test program did not appear to have a systematic effect orn the yaw character-
istics through the transition range.

The effectiveness of the full-span ailerons as a yaw control in hovering
and at low speeds can best be seen by comparing them with the tail-fan yaw
control on the VZ-2 aircraft which, according to reference 1k, gave a maximum
value of *1358 foot-pounds of yawing moment. The data of figure 22 show that
approximately +11° of aileron deflection would be required in hovering flight
and approximately *14O of aileron deflection would be required in the low speed
transition range to give this value of yawing moment. It should be emphasized
that reference 1k also stated that this amount of yaw control was definitely
considered inadequate for anything but ideal zero wind conditions and the most
modest maneuvers in yaw. However; the fact that considerably more yaw control
can be obtained over and above this value by further increases in deflection
would indicate that full-span ailerons offer some promise as an effective hov-
ering and low-speed yaw control. The adverse roll of the ailerons was practi-
cally nil in hovering and increased slowly as the speed was increased to about
20 knots. At speeds above this value, however, the adverse roll increased
rapidly at about a constant rate with speed. Extending and deflecting the
flaps decreased the adverse roll about 20 foot~pounds per degree at the lower
speeds regardless of the flap deflection angle. It appears that because of
the adverse roll associated with the aileron control it would be necessary to
phase in some roll producing control such as differential propeller pitch with
the yaw control fairly early in the transition to eliminate the adverse roll
that will be encountered.

CONCLUSIONS

On the basis of static force tests of a 1/h-scale model of the VZ-2 air-
craft with a full-span slotted flap, leading-edge droop, and full-span ailerons
the following conclusions are drawn:

1. The use of a full-span slotted flap produced sizable increases in
1ift which resulted in considerable reductions in the wing incidence angle
required throughout the transition range. These reductions in wing incidence
were very beneficial in reducing the wing stall in transition.

2. The use of leading-edge droop had no appreciable effect on the static
longitudinal characteristics.

5. The use of full-span ailerons as a yaw control for hovering and low-
speed transition flight conditions appears to offer promise. However, the
phasing in of some roll producing control will be necessary fairly early in the



transition to eliminate the adverse roll that results from the use of the
allerons as a yaw control.

Langley Research Center,
Nationel Aeronautics and Space Administration,
Langley Station, Hampton, Va., March 16, 196L.



REFERENCES

1. Reeder, John P.: Handling Qualities Experience With Several VTOL Research
Aircraft. NASA TN D-735, 1961.

2. Taylor, Robert T.: Wind-Tunnel Investigation of Effect of Ratio of Wing
"Chord to Propeller Diameter With Addition of Slats on the Aerodynamic
Characteristics of Tilt-Wing VTOL Configurations in the Transition Speed
Range. NASA TN D-17, 1959.

5. Kuhn, Richard E., and Hayes, William C., Jr.: Wind-Tunnel Investigation
of Iongitudinal Aerodynamic Characteristics of Three Propeller-Driven
VIOL Configurations in the Transition Speed Range, Including Effects
of Ground Proximity. NASA TN D-55, 1960.

4. Kuhn, Richard E.: Take-Off and Landing Distance and Power Requirements
of Propeller-Driven STOL Airplanes. Preprint No. 690, S.M.F. Pub. Fund
Preprint, Inst. Aero. Sci., Inc., Jan. 1957.

5. Newsom, William A., Jr., and Tosti, Louis P.: TForce-Test Investigation of
the Stability and Control Characteristics of a 1/4-Scale Model of a Tilt-
Wing Vertical-Teke-Off-and-Landing Aircraft. NASA MEMO 11-3-58L, 1959.

6. Tosti, Louis P.: Flight Investigation of the Stability and Control
Characteristics of a 1/k-Scale Model of a Tilt-Wing Vertical-Take-Off-
and-Landing Aircraft. NASA MEMO 11-4-58L, 1959.

7. Tosti, Louis P.: Aerodynamic Characteristiecs of a l/h-Scale Model of a
Tilt-Wing VIOL Aircraft at High Angles of Wing Incidence. NASA TN D=390,
1960.

8. Tosti, Louis P.: TIongitudinal Stability and Control of a Tilt-Wing VTOL
Alrcraft Model With Rigid and Flapping Propeller Blades. NASA TN D-1565,
1962.

9. Newsom, William A., Jr., and Tosti, ILouis P.: Slipstream Flow Around
Several Tilt-Wing VIOL Aircraft Models Operating Near the Ground.
NASA TN D-1382, 1962.

10. Tosti, Iouik P.: Rapid-Transition Tests of a 1/hk-Scale Model of the VZ-~2
Tilt-Wing Aircraft. NASA TN D-9L6, 1961.

11. Schade, Robert 0., and Kirby, Robert H.: Effect of Wing Stalling
in Transition on a l/h—Scale Model of the VZ-2 Aircraft. NASA
TN D-23%81, 196k4.

12. Tosti, Louis P.: Force-Test Investigation of the Stability and Control
Characteristics of a 1/8-Scale Model of a Tilt-Wing Vertical-Take-Off-
and-Landing Airplane. NASA TN D-44, 1960.



13. Mitchell, Robert G.: ¥Full-Scale Wind-Tunnel Test of the VZ-2 VIOL
Airplane With Particular Reference to the Wing Stall Phenomens.
NASA TN D~2013, 1963.

1. Pegg, Robert J.: Summary of Flight-Test Results of the VZ-2 Tilt-Wing
Aircraft. NASA TN D-989, 1962.

10



TABLE I.- GEOMETRIC CHARACTERISTICS OF THE MODEL

Propellers (three blades each)
Diameter, in. . .
Solidity .

Chord, in. C e e e e

Wing:

Pivot station, percent chord .

Sweepback (leading edge), deg
Airfoil section . . .

Aspect ratio . . . . . .
Chord, in. e e e e
Taper ratio . . . . . . .
Area, sq in. [
Span, in. . . PP

Dihedral angle, deg .o
Ailerons (each:
Full chord, in. . .
Span, in. .
Full chord, percent c
Full area, sqg in. . .
Chord aft of hinge llne, in.

Area aft of hinge line, sq in.

Flap:
Chord, in. .
Chord, percent ¢ .
Span, in. .
Area, sq in. e e e e e .

Vertical tail:
Sweepback (leading edge), deg
Airfoil section
Aspect ratio

Root chord (at top of fuselage), in. . e e e .
Tip chord (extended to plane of horlzontal tail), in. .

Taper ratio . .
Area, sq in.

Span (from top of fuselage to plane of horlzontal tall), in.
Rudder (hinge line perpendlcular to fuselage center line):

Chord, in.
Span, in. .
Area, sq in. c e e e e

Horizontal tail:
Sweepback (leading edge), deg
Airfoil section . . .
Aspect ratio . . - . .
Chord, in. e v e e .
Center-section chord, in.

Area, (1nc1ud1ng center body), sq in.

Span, in. . . PPN .

Dihedral angle, deg [
Ventral fin*:

Chord, in. “ e e e e e s

Span, in. . . . . . . . .

Area, sq in. ..

*Aft end located on model 11.0 inches

of fuselage.

forward of rudder hinge line

. Mbdlfled NACA 0012

28
0.239
3.0

- 33 7

Modlfled NACA hhlB

. ... h.78
.. 15.63
1.0

1166.5

Th.63

o]

2.95
32.62
0.19
96.23
2.65
86.LL

5.21

0.33
e e 32.62
c e e . . 169.95

28.0

. Modlfled NACA 0012

0.85

. . .. 23.0
.. . . 1h.63
.« . . . 0.6
. 301.0
16

5.75
.. 1h. 4k
S (T

[}

. 2.91
e e .+ . . 10.19
. 12.63

. 323.70

29.70
0

measured along bottom

11
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TABLE II.- WEIGHT OF FULL-SCALE ATRCRAFT AND
CENTER-OF~GRAVITY LOCATIONS FOR
VARIOUS WING INCIDENCE ANGLES

[Weignt, 3450 1b]

Center-of -gravity position

(from wing pivot), ft
iy, deg - C e

Horizontal Vertical
(forward) . (below)
9 0.167 1.40k4
20 ATk 1.364
25 A75 1.346
30 A75 1.328
35 -L75 1.309
4o .169 1.293
50 .158 1.258
60 .10 1.226
70 .118 1.198
80 .092 1.174
86.7 .071 1.160
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L-61-3172
Figure 1.- Photograph of the l/h-scale model of the VZ-2 tilt-wing VIOL aircraft with full-span flap and ailerons.
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Figure 2.- Three-view sketch of model.
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A1l dimensions are in inches.



Station, inches

Alrtoll
AIRFOIL
NACA 4415 alrfoll
to Station 9.975 Leading-edge droop
Statlon Upper Lower
0.178 0,437 -0.255
.356 .594 -0.353
713 818  ~0.466
1.069 .985 -0,529
1.426 1,117 -0.567
2,138 1.321 -0.596
2,850 1.461 -0.891
3.562 1.586 -0,567
4,275 1.603 -0.534
5.700 1.603 -0.463
7.125 1,801 -0.388
8,550 1.325 -0.305
9,975 1,087 -0.221
Straight line fairing to
15.530 023 -0.023
LEADING-EDGE DROOP FLAP SLOT CONTOUR AILERON
Radius of L.E., = 0,706 with Station Upper Lower Station Ordinate Radius of L.E. = 0,300 with center
center at Statlon 0,672 and at Station 12,980 and coordinate
coordinate -0.065. 10.420 -.080 -.080 9,970 -.221 0.180
10,460 +.030 -.140 10.100 -.215
Station Lower 10,500 .080 -.170 10.200 -.205 Station Upper Lower
10.800 .160 -.195 10,300 -.140
0.178 -0.570 10.750 .250 Straight line 10,400 +,020 12,980 .480 -.1186
«356 -0.706 11.000 .335 given under 10,500 .135 13.100 470 Straight line
.712 -0,787 11,250 .390  "Airfo1l" 10.600 L2102 13,300 .4580 glven under
1,068 -0,794 11,780 #450 10.800 £ 320 13,480 .435 "Alrroll"
1.425 -0.772 12,000 460 11,000 .380 Straight line
1,780 ~0,730 12,400 .480 11.200 .440 given under
2.137 -0.678 12,680 .485 -.125 11.500 .500 "Airfoll”
2.493 -0.637 12,720 .450 -.085 11,800 .535 15,630 .023 -.023
2,880 -0.607 Radius of back end = 0,363" 12.100 .540
3.206 -0.585 with center at Station 12,980" Stralght line fairing to
3,560 -0.567 and coordinate 0,180" 12,800 .520

Figure 3.- Geometric characteristics of wing section. All dimensions are in inches.
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Figure 6.- Variation of lift coefficient with angle of attack and drag coefficient.
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